51CTO学院 Python自然语言处理-BERT实战
-
知识精讲
课程种类
-
8
课时
-
中级
难度
-
唐
课程讲师
售价 : 25联盟卡
提取码 : 购买后方可查看
-
Python自然语言处理-BERT模型实战课程旨在帮助同学们快速学习当下NLP领域最核心的算法模型BERT的原理构造与应用实例。通俗讲解BERT模型中所涉及的核心知识点(Transformer,self-attention等),基于google开源BERT项目从零开始讲解如何搭建自然语言处理通用框架,通过debug源码详细解读其中每一核心代码模块的功能与作用。基于BERT框架进行中文情感分析与命名实体识别等主流项目实战,提供全部课程资料,包括PPT,数据,代码。
-
免费试看:https://pan.baidu.com/s/1c2VoEspuEA_WB6Y2S4fvFQ?pwd=8gdd
├──第1章自然语言处理通用框架BERT原理解读
| ├──1-1 BERT课程简介.mp4 12.44M
| ├──1-10 BERT模型训练方法.mp4 13.45M
| ├──1-11 训练实例.mp4 14.89M
| ├──1-2 BERT任务目标概述.mp4 7.57M
| ├──1-3 传统解决方案遇到的问题.mp4 14.94M
| ├──1-4 注意力机制的作用.mp4 9.50M
| ├──1-5 self-attention计算方法.mp4 15.62M
| ├──1-7 Multi-head的作用.mp4 12.73M
| ├──1-8 位置编码与多层堆叠.mp4 10.87M
| └──1-9 transformer整体架构梳理.mp4 15.27M
├──第2章谷歌开源项目BERT源码解读与应用实例
| ├──2-1 BERT开源项目简介.mp4 21.45M
| ├──2-10 构建QKV矩阵.mp4 27.66M
| ├──2-11 完成Transformer模块构建.mp4 23.00M
| ├──2-12 训练BERT模型.mp4 30.50M
| ├──2-2 项目参数配置.mp4 52.51M
| ├──2-3 数据读取模块.mp4 27.79M
| ├──2-4 数据预处理模块.mp4 24.44M
| ├──2-5 tfrecord制作.mp4 28.49M
| ├──2-6 Embedding层的作用.mp4 17.76M
| ├──2-7 加入额外编码特征.mp4 23.58M
| ├──2-8 加入位置编码特征.mp4 12.82M
| └──2-9 mask机制.mp4 20.85M
├──第3章项目实战-基于BERT的中文情感分析实战
| ├──3-1 中文分类数据与任务概述.mp4 35.80M
| ├──3-2 读取处理自己的数据集.mp4 29.75M
| └──3-3 训练BERT中文分类模型.mp4 38.14M
├──第4章项目实战-基于BERT的中文命名实体识别实战
| ├──4-1 命名实体识别数据分析与任务目标.mp4 17.36M
| ├──4-2 NER标注数据处理与读取.mp4 36.89M
| └──4-3 构建BERT与CRF模型.mp4 36.54M
├──第5章必备基知识点-word2vec模型通俗解读
| ├──5-1 词向量模型通俗解释.mp4 11.45M
| ├──5-2 模型整体框架.mp4 15.11M
| ├──5-3 训练数据构建.mp4 8.47M
| ├──5-4 CBOW与Skip-gram模型.mp4 13.01M
| └──5-5 负采样方案.mp4 14.57M
├──第6章必备基础-学习Tensorflow如何实现word2
| ├──6-1 数据与任务流程.mp4 25.95M
| ├──6-2 数据清洗.mp4 13.96M
| ├──6-3 batch数据制作.mp4 25.61M
| ├──6-4 网络训练.mp4 25.81M
| └──6-5 可视化展示.mp4 22.87M
├──第7章必备基础知识点-RNN网络架构与情感分析应用实例
| ├──7-1 RNN网络模型解读.mp4 16.13M
| ├──7-2 NLP应用领域与任务简介.mp4 18.31M
| ├──7-3 项目流程解读.mp4 23.65M
| ├──7-4 加载词向量特征.mp4 17.72M
| ├──7-5 正负样本数据读取.mp4 19.68M
| ├──7-6 构建LSTM网络模型.mp4 26.44M
| └──7-7 训练与测试效果.mp4 47.01M
├──第8章医学糖尿病数据命名实体识别
| ├──8-1 数据与任务介绍.mp4 11.46M
| ├──8-2 整体模型架构.mp4 8.09M
| ├──8-3 数据-标签-语料库处理.mp4 19.66M
| ├──8-4 输入样本填充补齐.mp4 17.69M
| ├──8-5 训练网络模型.mp4 21.02M
| └──8-6 医疗数据集(糖尿病)实体识别.mp4 46.71M
└──文档
| ├──第八章:医学糖尿病数据命名实体识别
| ├──第二章:谷歌开源项目BERT源码解读与应用实例
| ├──第六章:必备基础-掌握Tensorflow如何实现word2vec模型
| ├──第七章:必备基础知识点-RNN网络架构与情感分析应用实例
| ├──第三章:项目实战-基于BERT的中文情感分析实战
| ├──第四章:项目实战-基于BERT的中文命名实体识别实战
| ├──第五章:必备基知识点-word2vec模型通俗解读
| └──第一章:自然语言处理通用框架BERT原理解读
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?立即注册
x
|